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(1) Bézier Curves [4 points] 

Find a cubic Bézier curve P(u), 2]1,0[: RP →  with: 
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(2) De Casteljau algorithm and subdivision [1+2+2 points] 

Given the cubic polynomial curve 
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(a) Find the polar form p(u1,u2,u3 ) of P(u), as well as the Bézier points (the vertices of 
the control polygon) P0,P1,P2,P3 of P(u) w.r.t. the interval [2,4]. Sketch the the 
control polygon. (Hint: use a full A4 paper and a meaningful scale) 

(b) Evaluate the polynomial P(u) using the De Casteljau algorithm at the sample points 

}2/7,3,2/5{∈u and draw it into the same graph. 

(c) Use the result from (b) for subdividing P(u) at 3=u  and subdivide the right part of 

the curve again at its midpoint 2/7=u . Add this control polygon to the same 
graph like before and sketch the curve described by P(u). 

 

 



(3) Polar forms and derivatives [1+2+4 points] 

 Given is the cubic polynomial curve 
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 w.r.t. the parameter interval [0,1]. 

(a)  Find the first and second derivative of F. 

(b)  Find the polar form f(u1,u2,u3 ) of F as well as the polar forms of the 

derivatives F’ and F’’. show that they are equal to 

3 f(u1,u2,1
r

 ) and 6f(u1, 1
r

,1
r

)  

 respectively. 

 Note:  f(u1,u2,1
r

 ) is short for f(u1,u2,1)- f(u1,u2,0) 

 (c) Prove that the curvature of a Bézier curve at the starting point P0 

  is given by: 
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(4) DeBoor algorithm [2+2 points] 

a. Given the uniform B-spline defined by the points 
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and the knot vector [0,1,2,3,4,5]. Evaluate the position of the curve at 
parameter t=2.5 using DeBoor’s algorithm. Sketch the control polygon and the 
points constructed by the algorithm. 

b. For the B-spline from (a), compute the corresponding Bézier control points 
which describe the same cubic curve. Sketch the points and the resulting Bézier 
curve. 


